hERG 1b is critical for human cardiac repolarization.
نویسندگان
چکیده
The human ether-à-go-go-related gene (hERG; or KCNH2) encodes the voltage-gated potassium channel underlying IKr, a repolarizing current in the heart. Mutations in KCNH2 or pharmacological agents that reduce IKr slow action potential (AP) repolarization and can trigger cardiac arrhythmias associated with long QT syndrome. Two channel-forming subunits encoded by KCNH2 (hERG 1a and 1b) are expressed in cardiac tissue. In heterologous expression systems, these subunits avidly coassemble and exhibit biophysical and pharmacological properties distinct from those of homomeric hERG 1a channels. Despite these findings, adoption of hERG 1a/1b heteromeric channels as a model for cardiac IKr has been hampered by the lack of evidence for a direct functional role for the 1b subunit in native tissue. In this study, we measured IKr and APs at physiological temperature in cardiomyocytes derived from human induced pluripotent stem cells (iPSC-CMs). We found that specific knockdown of the 1b subunit using shRNA caused reductions in 1b mRNA, 1b protein levels, and IKr magnitude by roughly one-half. AP duration was increased and AP variability was enhanced relative to controls. Early afterdepolarizations, considered cellular substrates for arrhythmia, were also observed in cells with reduced 1b expression. Similar behavior was elicited when channels were effectively converted from heteromers to 1a homomers by expressing a fragment corresponding to the 1a-specific N-terminal Per-Arnt-Sim domain, which is omitted from hERG 1b by alternate transcription. These findings establish that hERG 1b is critical for normal repolarization and that loss of 1b is proarrhythmic in human cardiac cells.
منابع مشابه
Physiological properties of hERG 1a/1b heteromeric currents and a hERG 1b-specific mutation associated with Long-QT syndrome.
Cardiac I Kr is a critical repolarizing current in the heart and a target for inherited and acquired long-QT syndrome (LQTS). Biochemical and functional studies have demonstrated that I Kr channels are heteromers composed of both hERG 1a and 1b subunits, yet our current understanding of I Kr functional properties derives primarily from studies of homooligomers of the original hERG 1a isolate. H...
متن کاملMutation Associated With Long-QT Syndrome Physiological Properties of hERG 1a/1b Heteromeric Currents and a hERG 1b-Specific
Cardiac IKr is a critical repolarizing current in the heart and a target for inherited and acquired long-QT syndrome (LQTS). Biochemical and functional studies have demonstrated that IKr channels are heteromers composed of both hERG 1a and 1b subunits, yet our current understanding of IKr functional properties derives primarily from studies of homooligomers of the original hERG 1a isolate. Here...
متن کاملHeteromeric assembly of human ether-à-go-go-related gene (hERG) 1a/1b channels occurs cotranslationally via N-terminal interactions.
Alternate transcripts of the human ether-à-go-go-related gene (hERG1) encode two subunits, hERG 1a and 1b, which form potassium channels regulating cardiac repolarization, neuronal firing frequency, and neoplastic cell growth. The 1a and 1b subunits are identical except for their unique, cytoplasmic N termini, and they readily co-assemble in heterologous and native systems. We tested the hypoth...
متن کاملDifferentiating drug-induced multichannel block on the electrocardiogram: randomized study of dofetilide, quinidine, ranolazine, and verapamil.
Block of the hERG potassium channel and prolongation of the QT interval are predictors of drug-induced torsade de pointes. However, drugs that block the hERG potassium channel may also block other channels that mitigate torsade risk. We hypothesized that the electrocardiogram can differentiate the effects of multichannel drug block by separate analysis of early repolarization (global J-Tpeak) a...
متن کاملCotranslational association of mRNA encoding subunits of heteromeric ion channels.
Oligomers of homomeric voltage-gated potassium channels associate early in biogenesis as the nascent proteins emerge from the polysome. Less is known about how proteins emerging from different polysomes associate to form hetero-oligomeric channels. Here, we report that alternate mRNA transcripts encoding human ether-à-go-go-related gene (hERG) 1a and 1b subunits, which assemble to produce ion c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 50 شماره
صفحات -
تاریخ انتشار 2014